Skip to contents

Create nStart random sub-selections from the indexed grid and assign binary variable 1 to selected grids. This function initiates the genetic algorithm with a first random population and will only be needed in the first iteration.

Usage

init_population(Grid, n, nStart = 100)

Arguments

Grid

The data.frame output of grid_area" function, with X and Y coordinates and Grid cell IDs.

n

A numeric value indicating the amount of required turbines.

nStart

A numeric indicating the amount of randomly generated initial individuals. Default is 100.

Value

Returns a list of nStart initial individuals, each consisting of n turbines. Resulting list has the x and y coordinates, the grid cell ID and a binary variable of 1, indicating a turbine in the grid cell.

See also

Other Genetic Algorithm Functions: crossover(), fitness(), genetic_algorithm(), mutation(), selection(), trimton()

Examples

library(sf)
## Exemplary input Polygon with 2km x 2km:
Polygon1 <- sf::st_as_sf(sf::st_sfc(
  sf::st_polygon(list(cbind(
    c(4498482, 4498482, 4499991, 4499991, 4498482),
    c(2668272, 2669343, 2669343, 2668272, 2668272)
  ))),
  crs = 3035
))

Grid <- grid_area(Polygon1, 200, 1, TRUE)



## Create 5 individuals with 10 wind turbines each.
firstPop <- init_population(Grid = Grid[[1]], n = 10, nStart = 5)